Abstract

Temporal-spatial-resolved optical emission spectroscopy was employed to shed light on the dynamic behavior and the propagation mechanism of a plasma, originating from a dielectric barrier discharge in helium inside a quartz tube for microplasma jet formation. The plasma propagated, regardless of the gas flow direction, in an accelerating manner at a high velocity up to 17 km/s, suggesting that the propagation was sustained by photoionization. A theoretical analysis demonstrated that the enhancement of the local electric field ahead of the ionization front was mainly responsible for the acceleration of the plasma near the electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.