Abstract

Traffic congestion prediction (TCP) plays a vital role in intelligent transportation systems due to its importance of traffic management. Methods for TCP have emerged greatly with the development of machine learning. However, TCP is always a challenging work due to the dynamic characteristics of traffic data and the complex structure of traffic network. This paper presents a new quantum algorithm that can capture temporal and spatial features of traffic data simultaneously for TCP. The algorithm consists of the following steps. First, we give a closed-form solution in the Schrödinger approach theoretically to analyze this TCP problem in time dimension. Then we can get the temporal features from the solution. At last, we construct a quantum graph convolutional network and apply temporal features into it. Thus, the temporal-spatial quantum graph convolutional neural network is proposed. The feasibility of this method is proved through experiments on the simulation platform. The experimental results show the average error rate is 0.21 and can resist perturbation effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call