Abstract

In this study, the time-spatial evolution of single-pulse femtosecond laser-induced plasma in sapphire is studied by using femtosecond time-resolved pump-probe shadowgraphy. Laser-induced sapphire damage occurred when the pump light energy was increased to 20µJ. Based on its shadowgraphy image, the threshold electron density can be estimated to be about 2.48×1020 c m -3. The evolution law of the transient peak electron density and its spatial position as femtosecond laser propagation in sapphire were researched. The transitions from single-focus to multi-focus as the laser focus shifted from the surface to a deeper part were observed from the transient shadowgraphy images. The focal point distance in multi-focus increased as the focal depth increased. The distributions of femtosecond laser-induced free electron plasma and the final microstructure were consistent with each other.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call