Abstract

Several previous studies have proposed a temporal sequential-artificial neural network (TS-ANN) to convert PIR Sensor movement data into presence data and improve the performance of smart lighting control. However, such a temporal-sequential forecasting concept has a curse of dimensionality problem. This study aims to proposes the application of principal component analysis with TS-ANN (PCA-TS-ANN) as an intelligent method for controlling smart lighting with low dimensions. We have primary data directly from a smart lighting implementation that utilizes PIR sensors. We apply cross-correlation to the original dataset to find the optimum time step. Then we discover the optimum TS-ANN based on selected tuning parameter values through PCC. We then design and compare scenarios involving the combination of TS-ANN and PCA. Finally, we evaluate these scenarios using the metrics Accuracy, Precision, Recall, F1− Score, and Delay. The results of this study are the PCA-TS-ANN model with Accuracy, Precision, Recall, and F1−Score value of 0.9993, 0.9997, 0.9994, and 0.9996 respectively. The PCA method reduces the TS-ANN features from 1200 features to 36 features. The model size has also decreased from 3534kB to 807kB. Our model has a simpler complexity with TS-ANN that the µ ± σ Delay is 0.27±0.06 ms versus 0.34±0.11 ms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call