Abstract

Recurrent self-organizing map (RSOM) is studied in temporal sequence processing. RSOM includes a recurrent difference vector in each unit of the map, which allows storing temporal context from consecutive input vectors fed to the map. RSOM is a modification of the temporal Kohonen map (TKM). It is shown that RSOM learns a correct mapping from temporal sequences of a simple synthetic data, while TKM fails to learn this mapping. In addition, two case studies are presented, in which RSOM is applied to EEG based epileptic activity detection and to time series prediction with local models. Results suggest that RSOM can be efficiently used in temporal sequence processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.