Abstract

Introduction The ability of neurons within the hippocampus to differentially respond to specific temporal and spatial patterns of stimulation underlies the storage of memory and information in neural circuits. Signal transduction pathways are critical for information storage and alterations in key signaling molecules, such as the cAMP-dependent protein kinase (PKA) signaling pathway, modify both hippocampus-dependent learning and a form of synaptic plasticity known as late-phase long-term potentiation (L-LTP). The induction of late phase LTP (L-LTP) in the CA1 region of the hippocampus requires several kinases, including CaMKII and PKA, which are activated by calcium-dependent signaling processes and other intracellular signaling pathways. Many of the biochemical reactions leading to activation of these critical kinases are localized to dendritic spines. The small size of theses spines implies that small numbers of molecules are involved; the presence of anchoring proteins and the morphology of neurons implies that molecules are inhomogeneously distributed. Therefore, to accurately model these cellular signaling events requires software for stochastic reaction-diffusion systems.

Highlights

  • The ability of neurons within the hippocampus to differentially respond to specific temporal and spatial patterns of stimulation underlies the storage of memory and information in neural circuits

  • Signal transduction pathways are critical for information storage and alterations in key signaling molecules, such as the cAMP-dependent protein kinase (PKA) signaling pathway, modify both hippocampus-dependent learning and a form of synaptic plasticity known as late-phase long-term potentiation (L-LTP)

  • The induction of late phase LTP (L-LTP) in the CA1 region of the hippocampus requires several kinases, including CaMKII and PKA, which are activated by calcium-dependent signaling processes and other intracellular signaling pathways

Read more

Summary

Open Access

Address: Molecular Neuroscience Department, George Mason University, Fairfax, 22030, USA. Published: 13 July 2009 BMC Neuroscience 2009, 10(Suppl 1):P202 doi:10.1186/1471-2202-10-S1-P202. Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Don H Johnson Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here. http://www.biomedcentral.com/content/pdf/1471-2202-10-S1-info.pdf

Introduction
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call