Abstract

This study investigates the role of individual differences in time perception on task performance during teleoperation with latency. Long distance teleoperation induces latency, causing performance issues for the operator. Previous research demonstrated that individual differences in time perception predicted performance on a similar task, having participants navigate a radio controlled (RC) car around a track. This work extends the relationship into routes of varying course width to test whether differences in time perception predict movement over-/underestimation. Participants completed a time estimation task and a route navigation task while experiencing latency. In the time estimation task, participants estimated the duration of multiple visual stimuli (2 s or less). In the route navigation task, participants moved a virtual cube across a route. Each trial varied in the amount of latency and the amount of horizontal clearance in the track (4-10 m for a 1.2-m-long/wide cube). The results showed fairly consistent latency by time estimation and latency by clearance interaction effects on a wide set of trial-level variables, such as completion time, and action-level performance variables, such as time spent moving per move event. However, the results were not consistently in the predicted direction. Results suggest that clearance and timing affect performance across latency, at both the overall level (i.e., trial completion time) and at the action level (time spent moving). An open question remains as to how these contextual factors affect movement strategy selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call