Abstract

We report a short peptide that accessed dynamic catalytic polymers to demonstrate four-stage (sol-gel-weak gel-strong gel) temporal self-regulation of its mechanical properties. The peptide exploited its intrinsic catalytic capabilities of manipulating C-C bonds (retro-aldolase-like) that resulted in a nonlinear variation in the catalytic rate. The seven-residue sequence exploited two lysines for binding and cleaving the thermodynamically activated substrate that subsequently led to the self-regulation of the mechanical strengths of the polymerized states as a function of time and reaction progress. Interestingly, the polymerization events were modulated by the different catalytic potentials of the two terminal lysines to cleave the substrate, covalently trap the electrophilic products, and subsequently control the mechanical properties of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.