Abstract

Mormyrid weakly electric fish actively sense their surroundings by continuously emitting discrete pulses of electricity separated by varying intervals of silence. The temporal pattern of this pulsing behavior is related to context. While resting in the absence of an overt stimulus, baseline interpulse intervals (IPIs) mostly range 200-450 ms, and sequential variation is relatively high. Spontaneously, or following the presentation of a novel stimulus, IPIs transiently shorten during the performance of an electromotor "burst" display. We made intracellular whole cell recordings in vivo from neurons in the lateral nucleus of the torus semicircularis while the fish's dynamic pulsing behavior modified the temporal pattern of stimulation. Stimulation was designed to simulate the spatial patterns of AM that occur during the electrolocation of a resistive object. We discovered that toral neurons selectively respond to stimulation during a particular mode of electromotor activity. Two types of temporally selective neurons were discovered: baseline-selective neurons that displayed significantly higher postsynaptic potential (PSP) amplitude and spike count per electric organ discharge (EOD) during baseline electromotor activity and burst-selective neurons that displayed significantly higher PSP amplitude and spike count per EOD during electromotor burst displays. Interval-dependent changes in the strength of excitation and inhibition contributed to their selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.