Abstract

The Southern Ocean (SO) has been identified as one of the most widespread mesoscale eddy fields observed in the ocean. However, historically in the SO, eddy effects on the carbon cycle have been poorly understood, especially quantitatively, due to sparse observations in the SO and limited computational resources restricting model resolution. Recently, the importance of representing mesoscale eddies in the SO for generating reliable transient simulations and global climate projections has been suggested. This work focuses on comprehending and quantifying the vertical and horizontal eddy-induced transport of carbon, heat, and oxygen in the upper ocean (first 300 m) across time scales ranging from inter-annual to high frequency. It aims to elucidate the impact of these processes on the ocean's uptake of carbon, heat, and oxygen. Studying these three components helps to distinguish  the role of biogeochemical and physical processes, due to the shared and distinct mechanisms that affect them. As the main tool, we used simulations made with the ocean component of the ICON model, coupled with the biogeochemical model HAMOCC. We employed a hierarchy of model resolutions, ranging from eddy-parameterized to eddy-resolved resolutions, to elucidate the role of representing eddies in facilitating/impeding air-sea fluxes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call