Abstract

In this work we examine the time-resolved, instantaneous current response for the spinless Falicov–Kimball model at half-filling, on both sides of the Mott–Hubbard metal-insulator transition, driven by a strong electric field pump pulse. The results are obtained using an exact, nonequilibrium, many-body impurity solution specifically designed to treat the out-of-equilibrium evolution of electrons in time-dependent fields. We provide a brief introduction to the method and its computational details. We find that the current develops Bloch oscillations, similar to the case of DC driving fields, with an additional amplitude modulation, characterized by beats and induced by correlation effects. Correlations primarily manifest themselves through an overall reduction in magnitude and shift in the onset time of the current response with increasing interaction strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.