Abstract

1. The temporal resolving power of blowfly (Calliphora erythrocephala) photoreceptors and laminar monopolar neurons was investigated by stimulating the eye with sinusoidally modulated light of different intensities. Temporal resolving power was measured as -3 dB values of the maximal amplitude. 2. -3 dB values of photoreceptors increased only slightly with intensity from 25 to 35 Hz within the intensity range studied. -3 dB values of monopolar neurons increased sigmoidally from 30 Hz at low light intensities to 100 Hz at high intensities. 3. With regard to dark membrane potential, responses of monopolar neurons to stimulation with sinusoidally modulated light were formed by depolarizing and hyperpolarizing components. With iontophoretic application of decamethonium and hyperpolarizing current it was possible to reduce the depolarizing and hyperpolarizing components, respectively. 4. Monopolar neurons, whose depolarizing components were reduced by decamethonium, showed a constantly low temporal resolving power (30-40 Hz), similar to that of photoreceptors. The intensity dependence of cells with reduced hyperpolarizing components had nearly the same sigmoidal shape as that of untreated cells. However, the s-3 dB values were shifted 30–40 Hz to lower values. 5. These results suggest that the hyperpolarizing components of monopolar neurons' responses to sinusoidally modulated light are mainly responsible for a basic level of the temporal resolving power, whereas the depolarizing components produce the increase of temporal resolving power with increasing light intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.