Abstract

The expression of muscle-specific mRNAs was analyzed directly within individual cells by in situ hybridization to chicken skeletal myoblasts undergoing differentiation in vitro. The probes detected mRNAs for sarcomeric myosin heavy chain (MHC) or the skeletal, cardiac, and β isoforms of actin. Precise information as to the expression of these genes in individual cells was obtained and correlated directly with analyses of cell morphology and interactions, cell cycle stage, and immunofluorescence detection of the corresponding proteins. Results demonstrate that mRNAs for the two major muscle-specific proteins, myosin and actin, are not synchronously activated at the time of cell fusion. The mRNA for α-cardiac actin (CAct), known to be the predominant embryonic actin isoform in muscle, is expressed prior to cell fusion and prior to the expression of any isoform of muscle MHC mRNA. MHC mRNA accumulates rapidly immediately after fusion, whereas skeletal actin mRNA is expressed only in larger myofibers. Single cells expressing CAct mRNA have a characteristic short bipolar morphology, are in terminal G 1, and do not contain detectable levels of the corresponding protein. In a pattern of expression reciprocal to that of CAct mRNA, β-actin mRNA diminishes to low or undetectable levels in myofibers and in cells of the morphotype which expresses CAct mRNA. Finally, the intracellular distribution of mRNAs for different actin isoforms was compared using nonisotopic detection of isoform-specific oligonucleotide probes. This work illustrates a generally valuable approach to the analysis of cell differentiation and gene expression which directly integrates molecular, morphological, biochemical, and cell cycle information on individual cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.