Abstract
BackgroundWe previously demonstrated embryotrophic actions of maternal (oocyte-derived) follistatin during bovine early embryogenesis. Classical actions of follistatin are attributed to inhibition of activity of growth factors including activins and bone morphogenetic proteins (BMP). However, temporal changes in BMP mRNA in early bovine embryos and the effects of exogenous BMP on embryo developmental progression are not understood. The objectives of present studies were to characterize mRNA abundance for select BMP, BMP receptors and BMP receptor associated SMADs during bovine oocyte maturation and early embryogenesis and determine effects of addition of exogenous BMP protein on early development.MethodsRelative abundance of mRNA for BMP2, BMP3, BMP7, BMP10, SMAD1, SMAD5, ALK3, ALK6, ALK2, BMPR2, ACVR2A and ACVR2B was determined by RT-qPCR analysis of germinal vesicle (GV) and in vitro matured metaphase II (MII) oocytes and in vitro produced embryos collected at pronuclear, 2-cell (C), 4C, 8C, 16C, morula and blastocyst stages. Effects of addition of recombinant human BMP2 (0, 1, 10 and 100 ng/ml) during initial 72 h of embryo culture on early cleavage (within 30 h post insemination), total cleavage, development to 8C-16C and blastocyst stages and blastocyst mRNA abundance for markers of inner cell mass (NANOG) and trophectoderm (CDX2) were also determined.ResultsAbundance of mRNA for BMP2, BMP10, SMAD1, SMAD5, ALK3, ALK2, BMPR2 and ACVR2B was elevated in MII oocytes and/or pronuclear stage embryos (relative to GV) and remained elevated through the 8C -16C stages, whereas BMP3, BMP7 and ALK2 mRNAs were transiently elevated. Culture of embryos to the 8C stage in the presence of α-amanitin resulted in increased abundance for all of above transcripts examined relative to untreated 8C embryos. Effects of addition of exogenous BMP2 on early cleavage rates and rates of development to 8C-16C and blastocyst stages were not observed, but BMP2 treatment increased blastocyst mRNA for CDX2 and NANOG.ConclusionsAbundance of maternally derived mRNAs for above BMP system components are dynamically regulated during oocyte maturation and early embryogenesis. Exogenous BMP2 treatment does not influence progression to various developmental endpoints, but impacts characteristics of resulting blastocysts. Results support a potential role for BMPs in bovine early embryogenesis.
Highlights
We previously demonstrated embryotrophic actions of maternal follistatin during bovine early embryogenesis
Abundance of maternally derived mRNAs for above bone morphogenetic proteins (BMP) system components are dynamically regulated during oocyte maturation and early embryogenesis
Results support a potential role for BMPs in bovine early embryogenesis
Summary
We previously demonstrated embryotrophic actions of maternal (oocyte-derived) follistatin during bovine early embryogenesis. Our previous studies support a positive functional role for maternal (oocyte-derived) follistatin in bovine oocyte competence. Follistatin mRNA is positively associated with developmental competence in two distinct bovine models of egg quality [2,3]. Follistatin supplementation during the first 72 h of bovine embryo culture (until embryonic genome activation) enhanced proportion of embryos that cleaved early and proportion of embryos developing to the blastocyst stage in a dose dependent fashion [3]. We observed similar effects of follistatin treatment on early cleavage and rates of development to blastocyst stage for rhesus monkey embryos [4], demonstrating potential translational relevance of results from the bovine model system. The mechanisms responsible for stimulatory effects of follistatin on multiple indices of bovine early embryonic development to date still remain elusive
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.