Abstract

Two 915-MHz microwave treatments (2 kW-8 min and 4 kW-4 min) were applied to soil and their effects were monitored just after treatments (T0) and 26 days (T26) in soil microcosms. Densities of culturable bacteria, fluorescent pseudomonads and nematodes, hydrolysis activity and soil DNA content declined by over 50% immediately after both microwave treatments (T0), excluding the total fungal 18S rRNA (−13 or −17%) and bacterial 16S rRNA copies (non-significant). A rapid shift in bacterial community composition occurred from T0 towards a large increase in the relative abundance of Firmicutes (+1650%) and a concomitant decrease in various phyla (e.g. Acidobacteria, Actinobacteria, Bacteroidetes, Proteobacteria) from −85 to −61%. At T26 and for both treatments, fluorescein diacetate hydrolysis, density of culturable bacteria, 18S rRNA gene numbers, Simpson diversity, relative abundances of Bacteroidetes and Proteobacteria regained levels similar to controls. Alpha, Delta and Gamma classes Proteobacteria also end up reaching a similar level. In contrast, fluorescent pseudomonad density, nematode diversity and abundance, soil DNA content and relative abundances of some phylum (Acidobacteria, Actinobacteria, Chloroflexi) did not increase in such proportions. Most of the soil biological properties have not been permanently impacted. Nevertheless, the recovery kinetics highly differed according properties, with resilience indices at T26 varying from −87 to +99%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.