Abstract
The introduction of specific molecules into live cells is a widely used approach to probe cellular mechanisms. Recently, we have reported on the sustained dosing of molecules into single cells via a microscopic diffusion port. Here we describe temporal ratiometry, a method to reconstruct intracellular concentration distribution of the delivered molecules as it varies in time during dosing. To characterize this method, we analyzed fluorescence intensity maps obtained during delivery of Lucifer Yellow CH, LY, a polar fluorophore into A7r5 vascular smooth muscle cells, normal rat kidney epithelial cells (NRKE), and MCF-7 human breast cancer cells. Temporal ratiometry indicates a linear increase in concentration of LY in these cells with a nearly uniform distribution during 20 min of delivery. The method cancels the effects of varying cell height and variable accessible volume on the measured intensities at different locations within the cell. Temporal ratiometry will be useful to estimate dynamic changes in intracellular concentration distributions and thus, facilitate the understanding of transport, binding, sequestration, and efflux of molecules introduced into cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.