Abstract
When making parallel time-to-contact (TTC) estimates of two approaching objects, the two respective TTC estimates interfere with one another in an asymmetric fashion. The TTC of the later-arriving object is systematically overestimated, while the estimated TTC for the first-arriving object is as accurate as in a condition presenting only a single object. This asymmetric interference points to a processing bottleneck that could be due to early (e.g., during the estimation of the TTC from the optic flow) or late (e.g., during the timing of the response or the motor execution) constraints in the TTC estimation process. We used a Sperling-like prediction-motion task to differentiate between these two possibilities. Participants produced an absolute estimate of the TTC of only one of two objects approaching a target line. The target object to which the response was to be made was indicated by an auditory cue that occurred either at motion-onset or at the instant at which the two objects disappeared from the screen (occlusion-onset). The cue at motion-onset should disengage visual processing of the irrelevant stimulus. The cue at occlusion-onset, in contrast, requires visual processing of both relevant and irrelevant stimulus until occlusion. A single-object condition was introduced as a control condition. Results show symmetric interference in the motion-onset condition. In the occlusion-onset condition however, the results were congruent with asymmetric interference. Thus, the processing bottleneck in TTC estimation is originating at the earlier stages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.