Abstract

Cortical spreading depression (CSD) has recently been shown to induce the release of the nuclear protein termed high-mobility group box 1 from neurons, causing activation of the trigeminovascular system. Here, we explored the effects of single and multiple cortical spreading depression inductions on high-mobility group box 1 (HMGB1) transcriptional activity relative to high-mobility group box 1 protein expression levels and intracellular localization in cortical neurons and astrocytes. Single or multiple cortical spreading depression inductions were achieved by KCl application to the mouse cerebral cortex. The animals were sacrificed at 30 minutes, 3 hours and 24 hours after cortical spreading depression induction. High-mobility group box 1 expression levels were explored with in situ hybridization, Western blotting and immunostaining. Cortical spreading depression up-regulated high-mobility group box 1 transcriptional activity in neurons at 3 hours in a manner that was dependent on the number of cortical spreading depression inductions. At 24 hours, the high-mobility group box 1 transcriptional activity had returned to basal levels. Cortical spreading depression induced a reduction in high-mobility group box 1 protein expression at 3 hours, which was also dependent on the number of cortical spreading depression inductions. Following cortical spreading depression, the release of high-mobility group box 1 from the nucleus was observed in a small proportion of neurons, but not in astrocytes. Cortical spreading depression induced translocation of high-mobility group box 1 from neuronal nuclei, driving transcriptional up-regulation of high-mobility group box 1 to maintain protein levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.