Abstract
In this paper, a dynamic fuzzy network and its design based on genetic algorithm with variable-length chromosomes is proposed. First, the dynamic fuzzy network constituted from a series of dynamic fuzzy if–then rules is proposed. One characteristic of this network is its ability to deal with temporal problems. Then, the proposed genetic algorithm with variable-length chromosomes is adopted into the design process as a means of allowing the application of the network in situations where the actual desired output is unavailable. In the proposed genetic algorithm, the length of each chromosome varies with the number of rules coded in it. Using this algorithm, no pre-assignment of the number of rules in the dynamic fuzzy network is required, since it can always help to find the most suitable number of rules. All free parameters in the network, including the spatial input partition, consequent parameters and feedback connection weights, are tuned concurrently. To further promote the design performance, genetic algorithm with variable-length chromosomes and relative-based mutated reproduction operation is proposed. In this algorithm, the elite individuals are directly reproduced to the next generation only when their averaged similarity value is smaller than a similarity threshold; otherwise, the elites are mutated to the next generation. To show the efficiency of this dynamic fuzzy network designed by genetic algorithm with variable-length chromosomes and relative-based mutated reproduction operation, two temporal problems are simulated. The simulated results and comparisons with recurrent neural and fuzzy networks verify the efficacy and efficiency of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.