Abstract
For the prediction of landslide-generated waves, previous studies have developed numerous empirical equations to express the maximums of wave characteristics as functions of slide parameters upon impact. In this study, we built the temporal relationship between the wave characteristics and slide features. We gave specific insights into impulse waves generated by snow avalanches and mimicked them using a buoyant material called Carbopol whose density is close to that of water. Using the particle image velocimetry (PIV) technique, the slide’s temporal velocity field and thickness, as well as the temporal free water surface fluctuation, were determined experimentally. Using a statistical method denoted as panel data analysis, we quantified the temporal wave amplitude from the time series data of the thickness and depth-averaged velocity of the sliding mass at the shoreline. Then, the slide’s temporal thickness and velocity at the shoreline were estimated from the parameters of the stationary slide at the initial position, based on the viscoplastic theory. Combining the panel data analysis and the viscoplastic theory, the temporal wave amplitudes were estimated from the initial slide parameters. In the end, we validated the proposed theoretical–statistical combined predictive method with the support of experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.