Abstract

Histone deacetylases (HDACs) are a class of enzymes that control chromatin state and influence cell fate. We evaluated the chromatin accessibility and transcriptome dynamics of zinc-containing HDACs during cell differentiation invitro coupled with chemical perturbation to identify the role of HDACs in mesendoderm cell fate specification. Single-cell RNA sequencing analyses of HDAC expression during human pluripotent stem cell (hPSC) differentiation invitro and mouse gastrulation invivo reveal a unique association of HDAC1 and -3 with mesendoderm gene programs during exit from pluripotency. Functional perturbation with small molecules reveals that inhibition of HDAC1 and -3, but not HDAC2, induces mesoderm while impeding endoderm and early cardiac progenitor specification. These data identify unique biological functions of the structurally homologous enzymes HDAC1-3 in influencing hPSC differentiation from pluripotency toward mesendodermal and cardiac progenitor populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call