Abstract

The combination of flow cytometric sorting and high-throughput sequencing revealed the broad existence of photosynthetic picoeukaryote attached fungi (PPE-attached fungi) in Lake Chaohu. The relative sequence abundance of attached fungi was negatively correlated with that of the photosynthetic picoeukaryotes (PPEs). PPE-attached fungal communities were mainly composed of Basidiomycota, Chytridiomycota and Ascomycota. Temperature, Si and PPE community structure are the most important driving factors for the temporal succession of PPE-attached fungal communities. In particular, PPE-attached fungi can be divided into three groups from high to low temperatures. Phylogenetic molecular ecological network results indicated that the connectivity and the total number of links in the network of the high-temperature group (> 21.82°C) are higher than those in the other two temperature groups (between 9.67 and 21.82°C, and < 9.67°C, respectively). Moreover, the interaction between PPE-attached fungi and the PPEs changed from antagonistic to cooperative, with the decline in temperature. The most abundant operational taxonomic units of PPE-attached fungi were affiliated with the Cladosporium, the most common saprophytic fungus, whereas most fungal hub taxa were Chytridiomycota, the main parasite fungi of phytoplankton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.