Abstract

BackgroundRecent genomic studies have revealed a teleost-specific third-round whole genome duplication (3R-WGD) event occurred in a common ancestor of teleost fishes. However, it is unclear how the genes duplicated in this event were lost or persisted during the diversification of teleosts, and therefore, how many of the duplicated genes contribute to the genetic differences among teleosts. This subject is also important for understanding the process of vertebrate evolution through WGD events. We applied a comparative evolutionary approach to this question by focusing on the genes involved in long-term potentiation, taste and olfactory transduction, and the tricarboxylic acid cycle, based on the whole genome sequences of four teleosts; zebrafish, medaka, stickleback, and green spotted puffer fish.ResultsWe applied a state-of-the-art method of maximum-likelihood phylogenetic inference and conserved synteny analyses to each of 130 genes involved in the above biological systems of human. These analyses identified 116 orthologous gene groups between teleosts and tetrapods, and 45 pairs of 3R-WGD-derived duplicate genes among them. This suggests that more than half [(45×2)/(116+45)] = 56.5%) of the loci, probably more than ten thousand genes, present in a common ancestor of the four teleosts were still duplicated after the 3R-WGD. The estimated temporal pattern of gene loss suggested that, after the 3R-WGD, many (71/116) of the duplicated genes were rapidly lost during the initial 75 million years (MY), whereas on average more than half (27.3/45) of the duplicated genes remaining in the ancestor of the four teleosts (45/116) have persisted for about 275 MY. The 3R-WGD-derived duplicates that have persisted for a long evolutionary periods of time had significantly larger number of interacting partners and longer length of protein coding sequence, implying that they tend to be more multifunctional than the singletons after the 3R-WGD.ConclusionWe have shown firstly the temporal pattern of gene loss process after 3R-WGD on the basis of teleost phylogeny and divergence time frameworks. The 3R-WGD-derived duplicates have not undergone constant exponential decay, suggesting that selection favoured the long-term persistence of a subset of duplicates that tend to be multi-functional. On the basis of these results obtained from the analysis of 116 orthologous gene groups, we propose that more than ten thousand of 3R-WGD-derived duplicates have experienced lineage-specific evolution, that is, the differential sub-/neo-functionalization or secondary loss between lineages, and contributed to teleost diversity.

Highlights

  • Recent genomic studies have revealed a teleost-specific third-round whole genome duplication (3R-Whole-genome duplication (WGD)) event occurred in a common ancestor of teleost fishes

  • Orthologous gene groups between tetrapods and teleosts In this study, protein-coding genes involved in long-term potentiation of synaptic transmission (LTP), TT, olfactory transduction (OT), and tricarboxylic acid cycle (TCA) were analyzed to search for duplicate genes derived from the 3R-WGD, and their subsequent loss or retention was inferred

  • Even if the 3R-WGD is less directly associated with species richness, we propose that the lineage-specific evolution of many 3R-WGD-derived duplicates, that is, the differential sub-neofunctionalization or secondary loss between lineages, contributed to various aspects of genomic diversity that exists among teleosts

Read more

Summary

Introduction

Recent genomic studies have revealed a teleost-specific third-round whole genome duplication (3R-WGD) event occurred in a common ancestor of teleost fishes It is unclear how the genes duplicated in this event were lost or persisted during the diversification of teleosts, and how many of the duplicated genes contribute to the genetic differences among teleosts. Jawed vertebrates, which have the most complex body plan and behavioral characteristics, are thought to have experienced two rounds of (1R- and 2R-) WGD events early in their evolution, and teleost fishes experienced one more WGD (3R-WGD [6,9,10,11,12]) This notion is supported by data from several recent genomic analyses [4,13,14,15,16,17,18,19,20,21]. Since these events (1R-, 2R-, and 3R-WGD) occurred in ancestors shared by major phylogenetic groups such as tetrapods and teleosts, they may have been important for the formation of vertebrate-specific genomic features

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.