Abstract

BackgroundThe core enzymes of the DNA replication systems show striking diversity among cellular life forms and more so among viruses. In particular, and counter-intuitively, given the central role of DNA in all cells and the mechanistic uniformity of replication, the core enzymes of the replication systems of bacteria and archaea (as well as eukaryotes) are unrelated or extremely distantly related. Viruses and plasmids, in addition, possess at least two unique DNA replication systems, namely, the protein-primed and rolling circle modalities of replication. This unexpected diversity makes the origin and evolution of DNA replication systems a particularly challenging and intriguing problem in evolutionary biology.ResultsI propose a specific succession for the emergence of different DNA replication systems, drawing argument from the differences in their representation among viruses and other selfish replicating elements. In a striking pattern, the DNA replication systems of viruses infecting bacteria and eukaryotes are dominated by the archaeal-type B-family DNA polymerase (PolB) whereas the bacterial replicative DNA polymerase (PolC) is present only in a handful of bacteriophage genomes. There is no apparent mechanistic impediment to the involvement of the bacterial-type replication machinery in viral DNA replication. Therefore, I hypothesize that the observed, markedly unequal distribution of the replicative DNA polymerases among the known cellular and viral replication systems has a historical explanation. I propose that, among the two types of DNA replication machineries that are found in extant life forms, the archaeal-type, PolB-based system evolved first and had already given rise to a variety of diverse viruses and other selfish elements before the advent of the bacterial, PolC-based machinery. Conceivably, at that stage of evolution, the niches for DNA-viral reproduction have been already filled with viruses replicating with the help of the archaeal system, and viruses with the bacterial system never took off. I further suggest that the two other systems of DNA replication, the rolling circle mechanism and the protein-primed mechanism, which are represented in diverse selfish elements, also evolved prior to the emergence of the bacterial replication system. This hypothesis is compatible with the distinct structural affinities of PolB, which has the palm-domain fold shared with reverse transcriptases and RNA-dependent RNA polymerases, and PolC that has a distinct, unrelated nucleotidyltransferase fold. I propose that PolB is a descendant of polymerases that were involved in the replication of genetic elements in the RNA-protein world, prior to the emergence of DNA replication. By contrast, PolC might have evolved from an ancient non-templated polymerase, e.g., polyA polymerase. The proposed temporal succession of the evolving DNA replication systems does not depend on the specific scenario adopted for the evolution of cells and viruses, i.e., whether viruses are derived from cells or virus-like elements are thought to originate from a primordial gene pool. However, arguments are presented in favor of the latter scenario as the most parsimonious explanation of the evolution of DNA replication systems.ConclusionComparative analysis of the diversity of genomic strategies and organizations of viruses and cellular life forms has the potential to open windows into the deep past of life's evolution, especially, with the regard to the origin of genome replication systems. When complemented with information on the evolution of the relevant protein folds, this comparative approach can yield credible scenarios for very early steps of evolution that otherwise appear to be out of reach.ReviewersEric Bapteste, Patrick Forterre, and Mark Ragan.

Highlights

  • The core enzymes of the DNA replication systems show striking diversity among cellular life forms and more so among viruses

  • Inasmuch as accurate DNA replication is strictly required for the faithful transmission of the information stored in the genomes of all known cellular life forms, it can be legitimately viewed as the quintessential biological process, the crucial manifestation of the proverbial double helix

  • Mechanistically, the DNA replication processes in all cells, appear to be very similar [1]. It came as an extraordinary surprise when comparative genomics ushered in the realization that the protein components of DNA replication systems are not at all universally conserved [2,3,4,5], in a sharp contrast to the core parts of the translation and transcription systems that are, shared by all cellular life [6,7]. This dramatic disparity of DNA replication systems has been predicted in the seminal early work of Woese and Fox in the context of their concept of the Last Universal Common Ancestor (LUCA) of modern cellular life forms as a primitive entity, the progenote [8]

Read more

Summary

Introduction

The core enzymes of the DNA replication systems show striking diversity among cellular life forms and more so among viruses. Counter-intuitively, given the central role of DNA in all cells and the mechanistic uniformity of replication, the core enzymes of the replication systems of bacteria and archaea (as well as eukaryotes) are unrelated or extremely distantly related. Mechanistically, the DNA replication processes in all cells, appear to be very similar [1] It came as an extraordinary surprise when comparative genomics ushered in the realization that the protein components of DNA replication systems are not at all universally conserved [2,3,4,5], in a sharp contrast to the core parts of the translation and transcription systems that are, shared by all cellular life [6,7]. Several ancillary components, such as the sliding clamp (the proliferating cell nuclear antigen, PCNA, and its homologs), the clamp loader ATPase, and RNAse H are represented by well-conserved orthologs in bacteria and archaea (eukaryotes) [5]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call