Abstract
A first-order temporal non-commutative logic TN[l], which has no structural rules and has some l-bounded linear-time temporal operators, is introduced as a Gentzen-type sequent calculus. The logic TN[l] allows us to provide not only time-dependent, resource-sensitive, ordered, but also hierarchical reasoning. Decidability, cut-elimination and completeness (w.r.t. phase semantics) theorems are shown for TN[l]. An advantage of TN[l] is its decidability, because the standard first-order linear-time temporal logic is undecidable. A correspondence theorem between TN[l] and a resource indexed non-commutative logic RN[l] is also shown. This theorem is intended to state that “time” is regarded as a “resource”.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.