Abstract

A reconfigurable intelligent surface (RIS) has potential for enhancing the performance of wireless communication. A RIS includes cheap passive elements, and the reflecting of signals can be controlled to a specific location of users. In addition, machine learning (ML) techniques are efficient in solving complex problems without explicit programming. Data-driven approaches are efficient in predicting the nature of any problem and can provide a desirable solution. In this paper, we propose a temporal convolutional network (TCN)-based model for RIS-based wireless communication. The proposed model consists of four TCN layers, one fully connected layer, one ReLU layer, and lastly a classification layer. In the input, we provide data in the form of complex numbers to map a specified label under QPSK and BPSK modulation. We consider 2×2 and 4×4 MIMO communication using one base station and two single-antenna users. We have considered three types of optimizers to evaluate the TCN model. For benchmarking, long short-term memory (LSTM) and without ML are compared. The simulation results are conducted in terms of the bit error rate and symbol error rate which show the effectiveness of the proposed TCN model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call