Abstract

Link prediction accuracy in temporal networks is easily affected by the time granularity of network snapshots. This is due to the insufficient information conveyed by snapshots and the lack of temporal continuity between snapshots. We propose a temporal network link prediction method based on the optimized exponential smoothing model and node interaction entropy (OESMNIE). This method utilizes fine-grained interaction information between nodes within snapshot periods and incorporates the information entropy theory to improve the construction of node similarity in the gravity model as well as the prediction process of node similarity. Experiment results on several real-world datasets demonstrate the superiority and reliability of this proposed method in adapting to link prediction requirements over other methods across different time granularities of snapshots, which is essential for studying the evolution of temporal networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.