Abstract

We present a fluctuating hydrodynamics approach and a hybrid approach combining fluctuating hydrodynamics with generalized Langevin dynamics to resolve the motion of a nanocarrier when subject to both hydrodynamic interactions and adhesive interactions. Specifically, using these approaches, we compute equilibrium probability distributions at constant temperature as well as velocity autocorrelation functions of the nanocarrier subject to thermal motion in a quiescent Newtonian fluid medium, when tethered by a harmonic spring force mimicking a tether due to a single receptor–ligand bond. We demonstrate that the thermal equipartition of translation, rotation, and spring degrees of freedom are preserved by our formalism while simultaneously resolving the nature of the hydrodynamic correlations. Additionally, we evaluate the potential of mean force (or free energy density) along a specified reaction coordinate to facilitate extensive conformational sampling of the nanocarrier motion. We show that our results are in excellent agreement with analytical results and Monte Carlo simulations, thereby validating our methodologies. The frameworks we have presented provide a comprehensive platform for temporal multiscale modeling of hydrodynamic and microscopic interactions mediating nanocarrier motion and adhesion in vascular targeted drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call