Abstract

Summary Developmental biology studies using model organisms suggest that the emergence of spatial patterning in the ectoderm is mediated by the morphogen gradients. However, it is still unclear whether the morphogen gradient is necessary and dominates the cell spatial patterning, particularly in human genetic background. Here, we demonstrate that human pluripotent stem cells can self-organize to concentric rings of all major cell types in ectoderm when cultured on micropatterned surfaces in a chemically defined condition. We reveal that modulating the dynamics of NODAL, BMP, and WNT signals is sufficient to control the spatial order of different cell types. Our mathematical model suggests that changes in wavelength and phase of signaling patterns formed via reaction-diffusion may be the mechanism by which temporal information is translated into spatial information. Together, our work demonstrates that in vitro human ectoderm microtissues have great potential in understanding the mechanisms of early-stage human development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call