Abstract

Near-infrared laser provides a novel nerve stimulation modality to regulate the cell functions. Understanding its physiological effect is a prerequisite for clinic laser therapy applications. Here, the whole-cell sodium (Na) channel kinetics of neuron cell was employed to determine the temporal roles of infrared laser. The Na currents were elicited by electrical pulses that were synchronized at the rising and falling edges of the 980 nm laser pulses, respectively, to investigate the different infrared effect on cell functions. The time constants of activation (τ(m)) and inactivation (τ(h)) kinetics were extracted from fitting of the Na current (m(3)h) according to the Hodgkin-Huxley (HH) model. By comparing the time constants without and with the laser irradiation, we obtained that laser pulses changed the Na current kinetics by accelerating τ(h)-phase and slowing down τ m-phase at the beginning of the laser pulse, whereas both phases were accelerated at the end of the pulse. After relating the ratios of the time constants to the temperature characteristics of Na channel by Q10, we found that the accelerating in Na current kinetics could be related to the average temperature of extracellular solution in the corresponding time span by choosing Q10 = 2.6. The results of this study demonstrated that there was a positive correlation between the acceleration of the Na current kinetics and increases in temperature of the extracellular solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call