Abstract

We review the concepts of temporal modes (TMs) in quantum optics, highlighting Roy Glauber’s crucial and historic contributions to their development, and their growing importance in quantum information science. TMs are orthogonal sets of wave packets that can be used to represent a multimode light field. They are temporal counterparts to transverse spatial modes of light and play analogous roles—decomposing multimode light into the most natural basis for isolating statistically independent degrees of freedom. We discuss how TMs were developed to describe compactly various processes: superfluorescence, stimulated Raman scattering, spontaneous parametric down conversion, and spontaneous four-wave mixing. TMs can be manipulated, converted, demultiplexed, and detected using nonlinear optical processes such as three-wave mixing and quantum optical memories. As such, they play an increasingly important role in constructing quantum information networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.