Abstract

Controlling the temporal mode shape of quantum light pulses has wide ranging application to quantum information science and technology. Techniques have been developed to control the bandwidth, allow shifting in the time and frequency domains, and perform mode-selective beam-splitter-like transformations. However, there is no present scheme to perform targeted multimode unitary transformations on temporal modes. Here we present a practical approach to realize general transformations for temporal modes. We show theoretically that any unitary transformation on temporal modes can be performed using a series of phase operations in the time and frequency domains. Numerical simulations show that several key transformations on temporal modes can be performed with greater than 95% fidelity using experimentally feasible specifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call