Abstract

Little is currently known about the coordination of neural activity over longitudinal timescales and how these changes relate to behavior. To investigate this issue, we used resting-state fMRI data from a single individual to identify the presence of two distinct temporal states that fluctuated over the course of 18 mo. These temporal states were associated with distinct patterns of time-resolved blood oxygen level dependent (BOLD) connectivity within individual scanning sessions and also related to significant alterations in global efficiency of brain connectivity as well as differences in self-reported attention. These patterns were replicated in a separate longitudinal dataset, providing additional supportive evidence for the presence of fluctuations in functional network topology over time. Together, our results underscore the importance of longitudinal phenotyping in cognitive neuroscience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.