Abstract
Mechanical signals play an integral role in the regulation of bone mass and functional adaptation to bone loading. The osteocyte has long been considered the principle mechanosensory cell type in bone, although recent evidence suggests the sensory nervous system may play a role in mechanosensing. The specific signaling pathways responsible for functional adaptation of the skeleton through modeling and remodeling are not clearly defined. In vitro studies suggest involvement of intracellular signaling through mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and mammalian target of rapamycin (mTOR). However, anabolic signaling responses to bone loading using a whole animal in vivo model have not been studied in detail. Therefore, we examined mechanically-induced signaling events at five time points from 0 to 24 hours after loading using the rat in vivo ulna end-loading model. Western blot analysis of bone for MAPK’s, PI3K/Akt, and mTOR signaling, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to estimate gene expression of calcitonin gene-related protein alpha (CGRP-α), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), c-jun, and c-fos in dorsal root ganglion (DRG) of the brachial intumescence were performed. There was a significant increase in signaling through MAPK’s including extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK) in loaded limbs at 15 minutes after mechanical loading. Ulna loading did not significantly influence expression of the genes of interest in DRG neurons. Bone signaling and DRG gene expression from the loaded and contralateral limbs was correlated (SR>0.40, P<0.05). However, bone signaling did not correlate with expression of the genes of interest in DRG neurons. These results suggest that signaling through the MAPK pathway may be involved in load-induced bone formation in vivo. Further characterization of the molecular events involved in regulation of bone adaptation is needed to understand the timing and impact of loading events, and the contribution of the neuronal signaling to functional adaptation of bone.
Highlights
Bone has the remarkable ability to continuously change shape and mass in response to a wide variety of mechanical loads [1]
Protein extraction from dorsal root ganglion (DRG) neurons did not yield an adequate quantity of protein (0.5–1.3μg/μl); gene expression was estimated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) from DRG tissue
No significant effects of load were identified in the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway [P-p70(389), P-PKB(473), or P-PKB(308)] in loaded or contralateral limbs (Fig 3C)
Summary
Bone has the remarkable ability to continuously change shape and mass in response to a wide variety of mechanical loads [1] This process has been described as functional adaptation primarily via a mechanism known as mechanotransduction, where cells sense physical stimuli, convert them into biochemical signals, and trigger a cellular response [2,3,4]. Strain amplification must form part of the regulatory mechanism since physiological in vivo bone strain (
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.