Abstract
A link stream is a sequence of pairs of the form (t,{u,v}), where t∈N represents a time instant and u≠v. Given an integer γ, the γ-edge between vertices u and v, starting at time t, is the set of temporally consecutive edges defined by {(t′,{u,v})|t′∈〚t,t+γ−1〛}. We introduce the notion of temporal matching of a link stream to be an independent γ-edge set belonging to the link stream. We show that the problem of computing a temporal matching of maximum size is NP-hard as soon as γ>1. We depict a kernelization algorithm parameterized by the solution size for the problem. As a byproduct we also give a 2-approximation algorithm.Both our 2-approximation and kernelization algorithms are implemented and confronted to link streams collected from real world graph data. We observe that finding temporal matchings is a sensitive question when mining our data from such a perspective as: managing peer-working when any pair of peers X and Y are to collaborate over a period of one month, at an average rate of at least two email exchanges every week. We furthermore design a link stream generating process by mimicking the behavior of a random moving group of particles under natural simulation, and confront our algorithms to these generated instances of link streams. All the implementations are open source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.