Abstract
We consider a case study of the problem of deploying an autonomous air vehicle in a partially observable, dynamic, indoor environment from a specification given as a linear temporal logic (LTL) formula over regions of interest. We model the motion and sensing capabilities of the vehicle as a partially observable Markov decision process (POMDP). We adapt recent results for solving POMDPs with parity objectives to generate a control policy. We also extend the existing framework with a policy minimization technique to obtain a better implementable policy, while preserving its correctness. The proposed techniques are illustrated in an experimental setup involving an autonomous quadrotor performing surveillance in a dynamic environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.