Abstract

Recently, Pruett et al. [Pruett, C.D., Gatski, T.B., Grosch, C.E., Thacker, W.D., 2003. The temporally filtered Navier–Stokes equations: properties of the residual stress. Phys. Fluids 15, 2127–2140] proposed an approach to large-eddy simulation (LES) based on time-domain filtering; their approach was termed temporal large-eddy simulation or TLES. In a continuation of their work, Pruett and collaborators tested their methodology by successfully performing TLES of unstratified turbulent channel flow up to Reynolds number of 590 (based on channel half-height and friction velocity) [Pruett, C.D., Thomas, B.C., Grosch, C.E., Gatski, T.B., 2006. A temporal approximate deconvolution model for LES. Phys. Fluids 18, 028104, 4p]. Here, we carefully analyze the TLES methodology in order to understand the role of its key components and in the process compare TLES to more traditional approaches of spatial LES. Furthermore, we extend the methodology to stably stratified turbulent channel flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.