Abstract
Neuropathic pain, a highly debilitating chronic pain following nerve damage, is a reflection of the aberrant functioning of a pathologically altered nervous system. Previous studies have implicated activated microglia in the spinal dorsal horn (SDH) as key cellular intermediaries in neuropathic pain. Microgliosis is among the dramatic cellular alterations that occur in the SDH in models of neuropathic pain established by peripheral nerve injury (PNI), but detailed characterization of SDH microgliosis has yet to be realized. In the present study, we performed a short-pulse labeling of proliferating cells with ethynyldeoxyuridine (EdU), a marker of the cell cycle S-phase, and found that EdU+ microglia in the SDH were rarely observed 32 h after PNI, but rapidly increased to the peak level at 40 h post-PNI. Numerous EdU+ microglia persisted for the next 20 h (60 h post-PNI) and decreased to the baseline on day 7. These results demonstrate a narrow time window for rapidly inducing a proliferation burst of SDH microglia after PNI, and these temporally restricted kinetics of microglial proliferation may help identify the molecule that causes microglial activation in the SDH, which is crucial for understanding and managing neuropathic pain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.