Abstract

Three experiments were conducted to measure the temporal integration of vibrotactile patterns presented to the fingertip. In Experiment 1, letters were divided in half and the time between the onsets of the first half of the letter and second half of the letter, stimulus onset asynchrony (SOA), was varied. The recognizability of the letters declined as the SOA was increased from 9 to 100 msec. In Experiment 2, the time between two patterns constituting a masking stimulus was varied and the stimulus effectiveness in interfering with letter recognition was determined. The amount of masking increased as the SOA increased from 9 to 50 msec. In Experiment 3, the SOA between a letter and its complement (the portions of the tactile array not activated by the letter) was varied. Increasing SOA from 9 to approximately 50 msec led to increasingly accurate letter recognition. The results of the three experiments suggest that the skin is capable of complete temporal integration over a time period of less than 10 msec, and that the temporal integration function becomes asymptotic in 50 to 100 msec. The results also suggest that the onset of a vibrotactile pattern is critical for generating contours. The implications of the results for modes of generating tactile patterns and for temporal masking functions are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call