Abstract
Integration of balance-related cues from the vestibular and other sensory systems requires that they be perceived simultaneously despite arriving asynchronously at the central nervous system. Failure to perform temporal integration of multiple sensory signals represents a novel mechanism to explain symptoms in patients with imbalance. This study tested the ability of normal observers to compensate for sensory asynchronies between vestibular and auditory inputs. Double-blinded experimental design. We performed whole-body rotations about the earth-vertical axis following a raised-cosine trajectory at 0.5 and 1.0 Hz to several peak velocities up to a maximum of 180°/s in five normal subjects. Headphones were used to present a diotic auditory stimulus at various times relative to the onset of the rotation. Subjects were required to indicate which cue occurred first. The vestibular stimulus needed to be presented 61 milliseconds (at a stimulus frequency of 0.5 Hz) and 19 milliseconds (at 1.0 Hz) before the auditory stimulus. Stimuli presented within a window of 300 milliseconds (at 0.5 Hz) to 200 milliseconds (at 1.0 Hz) were judged to be simultaneous. The central nervous system must accommodate for delays in perception of vestibular and other sensory cues. Inaccurate temporal integration of these inputs represents a novel explanation for symptoms of imbalance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.