Abstract

We previously developed a stress-induced premature senescence (SIPS) model in which normal human fibroblast MRC-5 cells were treated with either the proteasome inhibitor MG132 or the vacuolar-type ATPase inhibitor bafilomycin A1 (BAFA1). To clarify the involvement of mitochondrial function in our SIPS model, MRC-5 cells were treated with MG132 or BAFA1 along with an inhibitor targeting either the electron transport chain complex I or complex III, or with a mitochondrial uncoupler. SIPS induced by MG132 or BAFA1 was significantly attenuated by short-term co-treatment with the complex III inhibitor, antimycin A (AA), but not the complex I inhibitor, rotenone or the mitochondrial uncoupler, carbonyl cyanide 3-chlorophenylhydrazone. By co-treatment with AA, mitochondrial and intracellular reactive oxygen species levels, accumulation of protein aggregates and mitochondrial unfolded protein responses (UPRmt ) were remarkably suppressed. Furthermore, AA co-treatment suppressed the hyperpolarization of the mitochondrial membrane and the induction of mitophagy observed in MG132-treated cells and enhanced mitochondrial biogenesis. These findings provide evidence that the temporal inhibition of mitochondrial respiration exerts protective effects against the progression of premature senescence caused by impaired proteostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.