Abstract
In this paper, a family of temporal high-order accurate numerical schemes for the Landau–Lifshitz–Gilbert (LLG) equation is proposed. The proposed schemes are developed utilizing the Gauss–Legendre quadrature method, enabling them to achieve arbitrary high-order time discretization. Furthermore, the geometrical properties of the LLG equation, such as the preservation of constant magnetization magnitude and the Lyapunov structure, are investigated based on the proposed discrete schemes. It is demonstrated that the magnetization magnitude remains constant with an error of (2p+3) order in time when utilizing a (2p+2)th-order discrete scheme. Additionally, the preservation of the Lyapunov structure is achieved with a second-order error in the temporal step size. Numerical experiments and simulations effectively verify the performance of our proposed algorithm and validate our theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.