Abstract

BackgroundGlossina pallidipes is a major vector of both Human and Animal African Trypanosomiasis (HAT and AAT) in Kenya. The disease imposes economic burden on endemic regions in Kenya, including south-western Kenya, which has undergone intense but unsuccessful tsetse fly control measures. We genotyped 387 G. pallidipes flies at 13 microsatellite markers to evaluate levels of temporal genetic variation in two regions that have been subjected to intensive eradication campaigns from the 1960s to the 1980s. One of the regions, Nguruman Escarpment, has been subject to habitat alteration due to human activities, while the other, Ruma National Park, has not. In addition, Nguruman Escarpment is impacted by the movement of grazing animals into the area from neighboring regions during the drought season. We collected our samples from three geographically close sampling sites for each of the two regions. Samples were collected between the years 2003 and 2015, spanning ~96 tsetse fly generations.ResultsWe established that allelic richness averaged 3.49 and 3.63, and temporal Ne estimates averaged 594 in Nguruman Escarpment and 1120 in Ruma National Park. This suggests that genetic diversity is similar to what was found in previous studies of G. pallidipes in Uganda and Kenya, implying that we could not detect a reduction in genetic diversity following the extensive control efforts during the 1960s to the 1980s. However, we did find differences in temporal patterns of genetic variation between the two regions, indicated by clustering analysis, pairwise FST, and Fisher’s exact tests for changes in allele and genotype frequencies. In Nguruman Escarpment, findings indicated differentiation among samples collected in different years, and evidence of local genetic bottlenecks in two locations previous to 2003, and between 2009 and 2015. In contrast, there was no consistent evidence of differentiation among samples collected in different years, and no evidence of local genetic bottlenecks in Ruma National Park.ConclusionOur findings suggest that, despite extensive control measures especially between the 1960s and the 1980s, tsetse flies in these regions persist with levels of genetic diversity similar to that found in populations that did not experience extensive control measures. Our findings also indicate temporal genetic differentiation in Nguruman Escarpment detected at a scale of > 80 generations, and no similar temporal differentiation in Ruma National Park. The different level of temporal differentiation between the two regions indicates that genetic drift is stronger in Nugruman Escarpment, for as-yet unknown reasons, which may include differences in land management. This suggests land management may have an impact on G. pallidipes population genetics, and reinforces the importance of long term monitoring of vector populations in estimates of parameters needed to model and plan effective species-specific control measures.

Highlights

  • Glossina pallidipes is a major vector of both Human and Animal African Trypanosomiasis (HAT and AAT) in Kenya

  • Genetic diversity and demographic estimates Allelic richness estimates indicate that Nguruman and Ruma exhibited levels of genetic diversity in samples pooled by year were similar to each other and to those reported throughout the G. pallidipes distribution

  • Ouma & Krafsur [18] focused on samples collected from Nguruman in 2001–2003 and did not find any differentiation, while our samples from the same locality from 2003 to 2015 showed significant differentiation. These findings indicate that temporal genetic differentiation occurs in G. pallidipes and can be detected at a scale of > 80 generations under some conditions. These findings suggest that previous studies could not detect temporal differnetioan in Nguruman [16] because samples were collected too close in time to each other, and future population genetic schemes should include a broad time frame to better detect temporal genetic differentiaion in tsetse

Read more

Summary

Introduction

Glossina pallidipes is a major vector of both Human and Animal African Trypanosomiasis (HAT and AAT) in Kenya. The disease imposes economic burden on endemic regions in Kenya, including south-western Kenya, which has undergone intense but unsuccessful tsetse fly control measures. Tsetse flies (genus Glossina) are the major insect vectors of Human African Trypanosomiasis (HAT) and Animal African Trypanosomiasis (AAT), serious animal and human diseases in sub-Saharan Africa [1,2,3]. In view of the above, vector control constitutes a major cornerstone of HAT and AAT suppression in Africa. Tsetse control methods include habitat interference, trapping, use of insecticide-treated targets, aerial or ground spraying, insecticide-treated cattle, or the release of sterile/transgenic insects [4, 7,8,9,10]. Vector control methods depend on complex coordination to maximize both their efficiency and long-term monitoring efforts [11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call