Abstract

BackgroundProsaposin encodes, in tandem, four small acidic activator proteins (saposins) with specificities for glycosphingolipid (GSL) hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies.ResultsOur hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss. Impairment of neuronal function was observed as early as 6 wks as demonstrated by the narrow bridges tests. Temporal transcriptome microarray analyses of brain tissues were conducted with mRNA from three prosaposin deficient mouse models: PS-NA, prosaposin null (PS-/-) and a V394L/V394L glucocerebrosidase mutation combined with PS-NA (4L/PS-NA). Gene expression alterations in cerebrum and cerebellum were detectable at birth preceding the neuronal deficits. Differentially expressed genes encompassed a broad spectrum of cellular functions. The number of down-regulated genes was constant, but up-regulated gene numbers increased with age. CCAAT/enhancer-binding protein delta (CEBPD) was the only up-regulated transcription factor in these two brain regions of all three models. Network analyses revealed that CEBPD has functional relationships with genes in transcription, pro-inflammation, cell death, binding, myelin and transport.ConclusionThese results show that: 1) Regionally specific gene expression abnormalities precede the brain histological and neuronal function changes, 2) Temporal gene expression profiles provide insights into the molecular mechanism during the GSL storage disease course, and 3) CEBPD is a candidate regulator of brain disease in prosaposin deficiency to participate in modulating disease acceleration or progression.

Highlights

  • Prosaposin encodes, in tandem, four small acidic activator proteins with specificities for glycosphingolipid (GSL) hydrolases in lysosomes

  • PS-/- mice show the onset of neurological signs at ~20 days of age and the phenotype rapidly progresses during the 5–10 days

  • prosaposin transgene (PS-NA) mice produced normal size litters and this model was subjected to neurological and behavioral testing. 4L/PS-NA mice are homozygous for a gba mutant gene encoding a V394L GCase against the PS-NA background [8]

Read more

Summary

Introduction

Prosaposin encodes, in tandem, four small acidic activator proteins (saposins) with specificities for glycosphingolipid (GSL) hydrolases in lysosomes. Saposin B deficiency leads to sulfatide accumulation and a metachromatic leukodystrophy-like disease [4] that is similar to the deficiency of arylsulfatase A, its cognate enzyme. The critical roles for saposins in GSL metabolism are highlighted by the extensive GSL storage in various central nervous system (CNS) regions in the human and mouse prosaposin deficiencies [1,3]. This deficiency leads to gross abnormalities in CNS degradation of lactosylceramide (LacCer), glucosylceramide (GC), sulfatide and galactosylceramide with consequent pathologic accumulation of these GSLs and gangliosides

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call