Abstract

.Significance: Line scanning-based temporal focusing multiphoton microscopy (TFMPM) has superior axial excitation confinement (AEC) compared to conventional widefield TFMPM, but the frame rate is limited due to the limitation of the single line-to-line scanning mechanism. The development of the multiline scanning-based TFMPM requires only eight multiline patterns for full-field uniform multiphoton excitation and it still maintains superior AEC.Aim: The optimized parallel multiline scanning TFMPM is developed, and the performance is verified with theoretical simulation. The system provides a sharp AEC equivalent to the line scanning-based TFMPM, but fewer scans are required.Approach: A digital micromirror device is integrated in the TFMPM system and generates the multiline pattern for excitation. Based on the result of single-line pattern with sharp AEC, we can further model the multiline pattern to find the best structure that has the highest duty cycle together with the best AEC performance.Results: The AEC is experimentally improved to from the of conventional TFMPM. The adopted multiline pattern is akin to a pulse-width-modulation pattern with a spatial period of four times the diffraction-limited line width. In other words, ideally only four spatial phase-shift scans are required to form a full two-dimensional image with superior AEC instead of image-size-dependent line-to-line scanning.Conclusions: We have demonstrated the developed parallel multiline scanning-based TFMPM has the multiline pattern for sharp AEC and the least scans required for full-field uniform excitation. In the experimental results, the temporal focusing-based multiphoton images of disordered biotissue of mouse skin with improved axial resolution due to the near-theoretical limit AEC are shown to clearly reduce background scattering.

Highlights

  • Multiphoton excited fluorescence (MPEF) microscopy is commonly adopted in academic studies, medical diagnoses, and industrial applications

  • We have demonstrated the developed parallel multiline scanning-based temporal focusing multiphoton microscopy (TFMPM) has the multiline pattern for sharp axial excitation confinement (AEC) and the least scans required for full-field uniform excitation

  • With a pulse width modulation (PWM) period four times the width of a single line, namely, a 25% duty cycle, we show that the multiline pattern can achieve an AEC of 1.7 μm, where the Talbot effect is eliminated, and the axial excitation maintains its best confinement as opposed to the 3.5 μm of the optimal conventional TFMPM

Read more

Summary

Results

The AEC is experimentally improved to 1.7 μm from the 3.5 μm of conventional TFMPM. The adopted multiline pattern is akin to a pulse-width-modulation pattern with a spatial period of four times the diffraction-limited line width. Ideally only four π∕2 spatial phase-shift scans are required to form a full two-dimensional image with superior AEC instead of image-size-dependent line-to-line scanning

Conclusions
Introduction
Overall DMD-Based TFMPM System Setup
L imag Filter
Theoretical Simulation
Objective lens UTF i
System Performance
Line Scanning Performance with Line Pattern of Different Line Width
Parallel Multiline Scanning
Biotissue Imaging with Parallel Multiline Scanning-Based TFMPM
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call