Abstract

A temporal finite element discretization of a boundary value problem has several advantages compared to a time-integrating evolution form for optimized target movement simulations. The paper gives some basic aspects on how such a finite element form can be stated, with both displacements and controls discretized and seen as unknowns. Aspects on the resulting formulations are discussed. Important issues are the order, continuity and fineness of the discretizations. When the formulation is seen in an optimization context, minimizing the effort for a prescribed movement, the discretization affects the results obtained in several manners, where some aspects of results are artifacts. The paper discusses these effects from basic principles, but also verifies them in numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call