Abstract
In real-world LiDAR-based applications, data is generated in the form of 3D point cloud sequences or 4D point clouds. However, the topic of semantic segmentation on 4D point clouds is under-investigated and existing methods are still not able to achieve satisfactory performance to meet the requirement for real-world applications. The temporal information across different point clouds plays an important role in dynamic scene understanding, which is not well explored in existing work. In this paper, we focus on exploring effective temporal information across two consecutive point clouds for semantic segmentation on point cloud sequences. To this end, we design three novel modules to enhance the features of target frames by extracting different temporal information in the local regions and global regions. Experimental results on SemanticKITTI and SemanticPOSS demonstrate that our method achieves superior performance in 4D semantic segmentation by utilizing temporal information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.