Abstract

Objective. Matrix metalloproteinase (MMP) activity is essential for remodeling of ischemic tissue. The murine hindlimb ischemia model exhibits tissue remodeling including revascularization in part due to angiogenesis. MMP-2 and -9 are type IV collagenases necessary for basement membrane degradation as a part of extracellular matrix remodeling and angiogenesis. Polymorphonuclear leukocytes (PMNs) contain MMP-9, and in the presence of membrane type 1 (MT1)-MMP, are able to activate proMMP-2 in vitro. Activation of MMP-2 and -9 may be essential in ischemic limbs both for tissue remodeling and revascularization via angiogenesis. We hypothesized that MMP-2 and -9 would be activated following acute hindlimb ischemia (HI), and this activation would be temporally related to PMN infiltration. Design of study. HI was achieved by unilateral femoral artery ligation in 20 FVB/N mice. Five mice underwent sham operation without hindlimb ischemia. Gastrocnemius muscle was harvested from both hindlimbs at 1, 3, 14, and 30 days following ligation and assayed for MMP-2, -9 (gelatin zymography), and MT1-MMP (Western blotting). MMP-2 and -9 expression and activation were analyzed by gelatin zymography and quantified by densitometry with NIH Image Analysis software. Neutrophils per high power field were counted. The results were expressed as a ratio of ischemic to nonischemic limbs and compared at each time point using ANOVA. Results. Zymographic analysis revealed a 212% increase in active MMP-2 3 days postligation ( P < .05). Active MMP-9 reached its maximum level (800% over baseline) on postoperative day 3 and continued to be elevated on day 14 (737% over baseline) ( P < .05). The increase in active MMP-2 and -9 levels paralleled PMN infiltration that also peaked 3 days postligation (1184% over baseline) ( P < .05). PMN count, MMP-2, and -9 all returned to baseline levels by postoperative Day 30. MT1-MMP was present in tissue samples from all time points as confirmed by Western blot. Conclusions. Limb ischemia causes an early activation of MMP-2 and -9 in temporal relation to PMN infiltration. HI may prime PMNs, leading to their sequestration in ischemic tissue. Primed PMNs, along with constitutively expressed MT1-MMP, may activate MMPs-2 and -9 and enable tissue remodeling essential for limb revascularization and angiogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.