Abstract

BackgroundMalaria is one of the deadliest diseases in the world, particularly in Africa. As such, resistance to anti-malarial drugs is one of the most important problems in terms of global malaria control. This study assesses the evolution of the different resistance markers over time and the possible influence of interventions and treatment changes that have been made in Equatorial Guinea.MethodsA total of 1223 biological samples obtained in the period 1999 to 2019 were included in the study. Screening for mutations in the pfdhfr, pfdhps, pfmdr1, and pfcrt genes was carried out by nested PCR and restriction-fragment length polymorphisms (RFLPs), and the study of pfk13 genes was carried out by nested PCR, followed by sequencing to determine the presence of mutations.ResultsThe partially and fully resistant haplotypes (pfdhfr + pfdhps) were found to increase over time. Moreover, in 2019, the fully resistant haplotype was found to be increasing, although its super-resistant counterpart remains much less prevalent. A continued decline in pfmdr1 and pfcrt gene mutations over time was also found. The number of mutations detected in pfk13 has increased since 2008, when artemisinin-based combination therapy (ACT) were first introduced, with more mutations being observed in 2019, with two synonymous and five non-synonymous mutations being detected, although these are not related to resistance to ACT. In addition, the non-synonymous A578S mutation, which is the most frequent on the African continent, was detected in 2013, although not in the following years.ConclusionsWithdrawal of the use of chloroquine (CQ) as a treatment in Equatorial Guinea has been shown to be effective over time, as wild-type parasite populations outnumber mutant populations. The upward trend observed in sulfadoxine-pyrimethamine (SP) resistance markers suggest its misuse, either alone or in combination with artesunate (AS) or amodiaquine (AQ), in some areas of the country, as was found in a previous study conducted by this group, which allows selective pressure from SP to continue. Single nucleotide polymorphisms (SNPs) 540E and 581G do not exceed the limit of 50 and 10%, respectively, thus meaning that SP is still effective as an intermittent preventive treatment (IPT) in this country. As for the pfk13 gene, no mutations have been detected in relation to resistance to ACT. However, in 2019 there is a greater accumulation of non-synonymous mutations compared to years prior to 2008.Graphical

Highlights

  • Malaria is one of the deadliest diseases in the world, in Africa

  • As for the pfk13 gene, no mutations have been detected in relation to resistance to artemisinin-based combination therapy (ACT)

  • The most important increase detected for the pfdhps gene was in 437G, which increased significantly from a frequency of 50% in 1999 to 93.5% in 2019 (p = 0.000)

Read more

Summary

Introduction

Malaria is one of the deadliest diseases in the world, in Africa. As such, resistance to antimalarial drugs is one of the most important problems in terms of global malaria control. Malaria control has increased significantly worldwide, this parasitic disease remains one of the deadliest in the world, in Africa, where 85% of fatal cases occur. To ensure the efficacy of the treatment, therapeutic efficacy studies of first- and second-line anti-malarial treatments should be carried out at least once every 2 years, as recommended in the World Health Organization (WHO) standard protocol for monitoring drug efficacy [3]. This provides confirmation that the treatment continues to work properly and the patient is guaranteed to receive quality treatment. After the latest therapeutic efficacy study carried out in that country [6], the first-line treatment for uncomplicated malaria was changed from ASAQ to artemether/lumefantrine (AL) [7]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.