Abstract

The coarsening behavior of four Al(Sc,Zr) alloys containing small volume fractions (<0.01) of Al 3(Sc 1− x Zr x ) (L1 2) precipitates was investigated employing conventional transmission electron microscopy (CTEM) and high-resolution electron microscopy (HREM). The activation energies for diffusion-limited coarsening were obtained employing the Umantsev–Olson–Kuehmann–Voorhees (UOKV) model for multi-component alloys. The addition of Zr is shown to retard significantly the coarsening rate and stabilize precipitate morphologies. HREM of Al(Sc,Zr) alloys aged at 300 °C reveals Al 3(Sc 1− x Zr x ) precipitates with sharp facets parallel to {1 0 0} and {1 1 0} planes. Coarsening of Al-0.07 Sc-0.019 Zr at.%, Al-0.06 Sc-0.005 Zr at.% and Al-0.09 Sc-0.047 Zr at.% alloys is shown to be controlled by volume diffusion of Zr atoms, while coarsening of Al-0.14 Sc-0.012 Zr at.% is controlled by volume diffusion of Sc atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.